Herramientas para el diseño de espacios naturales protegidos

MÁSTER UNIVERSITARIO EN BIODIVERSIDAD EN ÁREAS TROPICALES Y SU CONSERVACIÓN

UNIVERSIDAD INTERNACIONAL MENÉNDEZ PELAYO

ásteres niversit

Este documento puede utilizarse como documentación de referencia de esta asignatura para la solicitud de reconocimiento de créditos en otros estudios. Para su plena validez debe estar sellado por la Secretaría de Estudiantes UIMP.

DATOS GENERALES

Breve descripción

Contextualización

Dentro del desarrollo del programa el diseño de reservas, cualesquiera sea su categoría formal, es una herramienta fundamental: los planes de uso y gestión, así como el planeamiento territorial deben nutrirse de insumos objetivos y repetibles, algo que garantizan estas herramientas.

Una vez que en este módulo se ha tratado el tema de los inventarios de biodiversidad y del acceso distribuido a la información, así como el análisis de los patrones y la modelización de distribuciones, esta asignatura se presenta como integradora de toda la información que un analista puede generar en fases previas del estudio.

Como materia integradora, no solo está relacionada con las asignaturas de este módulo, sino también con las del siguiente, ya que en el diseño de reservas la caracterización de especies o comunidades 'clave', o determinada información genética, es importante para asignar valores de prioridad para cada una de las unidades de conservación.

Objetivos

- 1. Aprender técnicas objetivas y repetibles en el diseño de reservas como contraposición al diseño por "expertos".
- Comprender el funcionamiento de los algoritmos espacialmente explícitos de optimización global ("Spatially Explicit Annealing"), su potencial aplicación y sus posibles problemas o riesgos.
- 3. Comprender la interrelación de los SIG con los algoritmos espacialmente explícitos de optimización global ("Spatially Explicit Annealing").
- 4. Entender la importancia en el diseño de reservas de las interrelaciones que deben establecerse entre las variables ambientales y los condicionantes sociales.
- 5. Adquirir experiencia práctica en el uso y de algoritmos espacialmente explícitos de optimización global.

Título asignatura

Herramientas para el diseño de espacios naturales protegidos

Código asignatura

102055

Curso académico

2019-20

Planes donde se imparte

MÁSTER UNIVERSITARIO EN BIODIVERSIDAD EN ÁREAS TROPICALES Y SU CONSERVACIÓN

Créditos ECTS

4

Carácter de la asignatura

OBLIGATORIA

Duración

Cuatrimestral

Idioma

Castellano

CONTENIDOS

Contenidos

INTRODUCCIÓN AL DISEÑO DE RESERVAS: Visión general de las estrategias de conservación. Métodos de diseño de reservas. Principio de diseño de reservas. Componentes de una reserva. Uso de modelos en el diseño de reservas.

CONDICIONANTES EN EL DISEÑO DE RESERVAS: Escala. Fragmentación. Conectividad. Relación con aspectos legales.

CONSERVACIÓN Y ANÁLISIS DE RESERVAS: Análisis prospectivos y retrospectivos. Cuantificación de niveles y efectos de conservación. Determinación de efectos sobre la vulnerabilidad de especies y su recuperación. Incertidumbre.

RESULTADOS DE APRENDIZAJE Y DE FORMACIÓN

Generales

- CG1 Adquirir conocimientos fundamentales y herramientas necesarias para la investigación aplicada en el ámbito de la biodiversidad.
- CG2 Aprender el uso de nuevas tecnologías para afrontar los problemas relacionados con la biodiversidad y su conservación en los países más diversos del mundo.
- CG3 Poseer una visión integradora que permita una mejor comprensión de los procesos que inciden en la pérdida de biodiversidad.
- CG4 Dominar habilidades para comunicar conocimientos y conclusiones a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- CG5 Elaborar proyectos con posibilidades de financiación tanto por instituciones publicas como privadas.

Transversales

- CT3 Desarrollar actitudes de ética y responsabilidad profesional, así́ como el respeto a la diversidad cultural.
- CT4 Desarrollar la capacidad de síntesis, organización, argumentación y análisis de la información.
- CT5 Aprender a trabajar en equipos multidisciplinares y asumir funciones de liderazgo en trabajos colectivos.
- CT6 Aprender a diseñar y organizar el propio trabajo, fomentando la iniciativa y el espíritu emprendedor.
- CT7 Capacidad de convivencia y trabajo en grupo en condiciones adversas.
- CT8 Organización de expediciones y trabajo de campo.
- CT9 Capacidad de comunicación con los actores sociales en el campo de la conservación (comunidades indígenas, autoridades, investigadores, tomadores de decisiones, propietarios de terrenos, etc.).

Específicas

CE1 - Adquirir una formación especializada en el marco científico y técnico del estudio de la biodiversidad en biotas tropicales.

- CE3 Dominar los conocimientos fundamentales y específicos para diseñar y ejecutar proyectos profesionales y de investigación teniendo en cuenta el contexto de los países en que se ejecutaría.
- CE4 Dominar los conocimientos fundamentales y específicos para diseñar y ejecutar planes de uso y gestión del territorio que se integren en la filosofía del desarrollo sostenible.
- CE5 Saber planificar y gestionar los usos de las biotas tropicales asegurando su sostenibilidad ambiental, equilibrando los usos e intereses con la preservación de sus características naturales.
- CE6 Adquirir los conocimientos fundamentales y específicos para desarrollar su actividad profesional en el ámbito de la consultoría y asesoramiento a la Administración y a las empresas.

PLAN DE APRENDIZAJE

Actividades formativas

- AF1.- Clases teóricas y/o prácticas (28 horas 100% presencialidad)
- AF2.- Análisis de casos (2 horas 10% presencialidad)
- AF3.- Preparación de materiales (2 horas 10% presencialidad)
- AF4.- Trabajo autónomo (2 horas 0% presencialidad)
- AF5.- Realización de talleres prácticos (2 horas 100% presencialidad)
- AF8.- Tutorías (2 horas 100% presencialidad)

Metodologías docentes

Cada sesión se iniciará con una exposición por parte del profesor de los objetivos formativos del tema, seguida del tema propiamente dicho. Esta parte se hará vinculando los conceptos nuevos con los ya adquiridos por los alumnos, y se pasará inmediatamente a su práctica en los computadores para que los conceptos se afiancen. Se tratará cada problema específico con diferentes programas informáticos, para que el alumno comprenda las particularidades de cada uno de ellos y pueda elegir el más adecuado para cada diseño concreto.

Las prácticas se harán con datos reales propuestos por los profesores, aunque se valorará positivamente la aportación por parte de los alumnos de datos y propuestas de análisis. La Alianza Jatún Sacha-CDC (Centro de Datos para la Conservación) - El Parque Natural Pacuare tiene informes técnicos y proyectos de conservación, por lo que cuenta con gran cantidad de datos reales para este propósito.

Las clases prácticas serán participativas, de tal manera que la optimización de los diseños expuestos se logre mediante la interacción de todos los participantes. Cada alumno o grupo reducido desarrollará sus propios ejercicios prácticos, y su desempeño, así como el afianzamiento de las técnicas y conceptos tratados será importante en la evaluación final.

SISTEMA DE EVALUACIÓN

Descripción del sistema de evaluación

- SE1.- Evaluación del Trabajo Personal (ponderación mínima 30% y máxima 70%)
- SE3.- Evaluación del Informe final (ponderación mínima 20% y máxima 40%)
- SE4.- Evaluación de las presentaciones orales (ponderación mínima 30% y máxima 70%)

PROFESORADO

Profesor responsable

Muñoz Fuente, Jesús

DOCTOR EN BIOLOGÍA. INVESTIGADOR CIENTÍFICO DE OPIS. REAL JARDÍN BOTÁNICO (CSIC).

Profesorado

Profesor Responsable de la asignatura

HORARIO

Horario

28/10/2019

9:30 - 13:30

Herramientas para el diseño de espacios naturales protegidos

Jesús Muñoz Fuente

DOCTOR EN BIOLOGÍA. INVESTIGADOR CIENTÍFICO DE OPIS. REAL JARDÍN BOTÁNICO (CSIC).

29/10/2019

9:30 - 13:30

Herramientas para el diseño de espacios naturales protegidos

Jesús Muñoz Fuente

DOCTOR EN BIOLOGÍA. INVESTIGADOR CIENTÍFICO DE OPIS. REAL JARDÍN BOTÁNICO (CSIC).

30/10/2019

9:30 - 13:30

Herramientas para el diseño de espacios naturales protegidos

Jesús Muñoz Fuente

DOCTOR EN BIOLOGÍA. INVESTIGADOR CIENTÍFICO DE OPIS. REAL JARDÍN BOTÁNICO (CSIC).

31/10/2019

9:30 - 13:30

Herramientas para el diseño de espacios naturales protegidos

Jesús Muñoz Fuente

DOCTOR EN BIOLOGÍA. INVESTIGADOR CIENTÍFICO DE OPIS. REAL JARDÍN BOTÁNICO (CSIC).

04/11/2019

9:30 - 13:30

Herramientas para el diseño de espacios naturales protegidos

Jesús Muñoz Fuente

DOCTOR EN BIOLOGÍA. INVESTIGADOR CIENTÍFICO DE OPIS. REAL JARDÍN BOTÁNICO (CSIC).

05/11/2019

9:30 - 14:30

Herramientas para el diseño de espacios naturales protegidos

Jesús Muñoz Fuente

DOCTOR EN BIOLOGÍA. INVESTIGADOR CIENTÍFICO DE OPIS. REAL JARDÍN BOTÁNICO (CSIC).

06/11/2019

9:30 - 14:30

Herramientas para el diseño de espacios naturales protegidos

Jesús Muñoz Fuente

DOCTOR EN BIOLOGÍA. INVESTIGADOR CIENTÍFICO DE OPIS. REAL JARDÍN BOTÁNICO (CSIC).

07/11/2019

9:30 - 14:30

Herramientas para el diseño de espacios naturales protegidos

Jesús Muñoz Fuente

DOCTOR EN BIOLOGÍA. INVESTIGADOR CIENTÍFICO DE OPIS. REAL JARDÍN BOTÁNICO (CSIC).

08/11/2019

9:30 - 14:30

Herramientas para el diseño de espacios naturales protegidos

Jesús Muñoz Fuente

DOCTOR EN BIOLOGÍA. INVESTIGADOR CIENTÍFICO DE OPIS. REAL JARDÍN BOTÁNICO (CSIC).

BIBLIOGRAFÍA Y ENLACES RELACIONADOS

Bibliografía

BIBLIOGRAFÍA ESPECIALIZADA

Además de la bibliografía básica indicada más abajo se hará uso como fuente de información más específica y actualizada de otros trabajos científicos publicados en revistas incluidas en la base de datos del ISI e informes técnicos utilizados por ministerios e instituciones.

BIBLIOGRAFÍA GENERAL

Margules, C.R. & Pressey, R.L. 2000. Systematic conservation planning. Nature 405: 243-253.

Groves, C., Valutis, L., Vosick, D., Neely, B., Wheaton, K., Touval, J. & Runnels, B. 2002. Diseño de una geografía de la esperanza: manual para la planificación de la conservación ecorregional y Apéndices. Volúmenes I y II. http://conserveonline.org/docs/2000/11/GoH%28S%29.pdf (15 marzo 2006).

Simberloff, D., Farr, J.A., Cox, J. & Mehlman, D. 1992. Movement corridors: conservation bargains or poor investments. Conservation Biology 6: 493-504.

Yahner, R.H.& Mahan, C.G. 1997. Behavioral considerations in fragmented landscapes. Conservation Biology 11(2): 569-570.

Puth, L.M. & Wilson, K.A. 2001. Boundaries and corridors as a continuum of ecological flow control: Lessons from rivers and streams. Conservation Biology: 15(1): 21-30.

Tewksbury, J.J., Levey, D.J., Haddad, N.M., Sargent, S., Orrock, J.L., Weldon, A., Danielson, B.J., Brinkerhoff, J., Damschen, E.I. & Townsend, P. 2002. Corridors affect plants, animals, and their interactions in fragmented landscapes. Proceedings of the National Academy of Sciences of the United States of America 99(20): 12923-12926.

http://www.ecology.ug.edu.au/index.html?page=27710

http://uts.cc.utexas.edu/~consbio/Cons/Labody.html

http://www.biogeog.ucsb.edu/projects/tnc/toolbox.html